
The interplay between androgens and adipocytes: 
the foundation of comorbidities of polycystic ovary 
syndrome

Introduction 

Polycystic ovary syndrome (PCOS) is a complex endocrine 
disorder characterized by oligo-anovulation, hyperandrogen-
ism, and polycystic ovaries on ultrasound. Frequently, PCOS is 
accompanied by carbohydrate and lipid metabolism disturbanc-
es and inflammatory abnormalities that lead to an increased risk 
of development of cardiovascular disease (CVD) [1-3]. Higher 
levels of circulating androgens occur in 70-80% of women with 
PCOS; overweight/obesity and insulin resistance are also found 
in about 70% of women with this condition [4-7]. The amount and 
distribution of adipose tissue and the preferential visceral adi-
pocyte deposition seen in normal-weight and overweight/obese 
women with PCOS are currently not completely understood [8]. 
Despite the understanding that high levels of androgens help de-
termine visceral adipocyte accumulation in women with PCOS, 
many knowledge gaps need to be filled [9]. 

Material and methods

This comprehensive review aimed to summarize the current 
knowledge regarding the implications of the intimate relation-
ship between androgens and adipocytes, favoring the develop-
ment of comorbidities in women with PCOS. The review en-
tailed a detailed analysis of publications on the interrelationship 

between hyperandrogenism and adipocyte dysfunction in wom-
en with PCOS. We searched Scopus, Google Scholar, Medline, 
and PubMed to identify the most relevant publications between 
2000 and 2021. The search was expanded by the retrieval of 
bibliographic citations from the identified articles. 

When providing crucial basic knowledge, studies published 
before 2000 were also included. Keywords used in the search 
were as follows: polycystic ovary syndrome, hyperandrogen-
ism, obesity, adiposity, dysfunctional adipocyte, insulin resist-
ance, adipose tissue distribution, and various combinations of 
these terms.

Adipocyte steroid uptake, production, 
and metabolism

Adipocytes, directly and indirectly, participate in androgen 
production [10]. In addition to ovarian and adrenal sources, con-
version of the weak androgen dehydroepiandrosterone (DHEA) 
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into androstenedione (A4), of A4 into testosterone (T), and of 
T into dihydrotestosterone (DHT) in adipose tissue are also 
essential sources of circulating androgens. Adipocytes express 
several steroidogenic enzymes, and they locally modulate ster-
oid levels [11]. The steroidogenic enzyme activity of adipocytes 
appears to be relevant in the development of hyperandrogenism 
in PCOS, particularly because weak androgens such as A4 are 
rapidly taken up, sequestered from circulation by mature adipo-
cytes, and converted into strong androgens [10-12]. For this rea-
son, the amount of androgens in adipocytes, which differs in 
omental and subcutaneous depots, is even more significant than 
the amount in circulation [13]. Furthermore, enhanced adipocyte 
steroidogenesis in women with PCOS may explain the associa-
tion between hyperandrogenism and obesity [14, 15]. 

Regarding the direct participation of adipocytes in steroi-
dogenesis, levels of type 5 17β-hydroxysteroid dehydrogenase 
(17β-HSD), the enzyme that converts A4 into T, are increased in 
subcutaneous adipose tissue of obese women [16]. The activity of 
5α-reductase, the enzyme that converts T into DHT, is increased 
in PCOS with or without obesity [17]. 

Of note, 17α-hydroxylase (CYP17A1) activity positively 
correlates with the waist/height ratio and negatively correlates 
with the conicity index in women with PCOS [18]. Furthermore, 
17,20 lyase activity correlates with various biomarkers of adi-
posity in PCOS [18]. Levels of 11β-hydroxylase are slightly de-
creased in hyperandrogenemic women with PCOS [19]. These 
findings suggest that clinical biomarkers of body fat mass and 
distribution correlate with the activities of various steroidogenic 
enzymes within adipose tissue.

Indirect participation of adipocytes in the production of 
androgens may be modulated by the action of adipocytokines 
on adrenal and ovarian steroidogenic cells. The effects of ad-
ipocytokines on steroidogenesis have recently been reviewed 
[20]. In women with PCOS, there is increased secretion of harm-
ful adipocytokines such as leptin and tumor necrosis factor-α 
(TNF-α), and lower secretion of beneficial adipocytokines 
such as adiponectin and omentin-1. The effects of adipocy-
tokines on adrenal cell steroidogenesis depend on their amounts 
and types. In humans, leptin decreased adrenocorticotropic 
hormone-induced secretion of DHEA by decreasing the expres-
sion of CYP17A1 [21], while adiponectin stimulates cortisol pro-
duction and the expression of a steroidogenic acute regulatory 
protein (StAR) and a cholesterol side-chain cleavage enzyme 
(CYP11A1) [22]. In ovarian cells, there is a bidirectional re-
lationship between theca cells, granulosa cells, and adipo-
cytes [20].

In women with PCOS, leptin levels are positively correlated 
with T, body fat mass, body mass index, waist-hip ratio, and 
metabolic abnormalities [23]. Adiponectin has lower levels 
and is negatively correlated with androgen levels in wom-
en with or without PCOS 24]. Resistin levels positively cor-
relate with T through the higher activity of CYP17A1 [25]. 
In obese PCOS, chemerin and RBP-4 levels are positively 
associated with T concentrations [26, 27].

Overall, androgens are produced and interconverted by 
adipocytes, and these phenomena could account for a third 
source of androgen production, mainly in conditions of ad-
iposity [28]. Regional differences in steroidogenic enzyme 

activities may exist. The net amount of excessive andro-
gen production, particularly of potent androgens, by adi-
pocytes in women with PCOS has not yet been determined.

The role of androgens on adipocyte function

The effect of androgens on adipose tissue function depends 
on circulating androgen levels, androgen receptor (AR) density 
and affinity, and local steroidogenic enzyme activities. There are 
androgen receptors both on preadipocytes and on mature adipo-
cytes [29]. In these cells, androgens may influence gene expres-
sion, cell proliferation, cell differentiation, and carbohydrate 
and lipid metabolism. Androgens increase the transcription of 
their receptors in mononuclear cells, favoring the release of ad-
ipocytokines [30]. Furthermore, T also increases the transcription 
of the chemokine (C-C motif) ligand 2 (CCL2) in omental adi-
pose tissue, triggering macrophage invasion [31].

As regards gene expression, androgens bound to AR func-
tion as transcription factors that regulate the expression of var-
ious genes. Gene expression regulation is controlled through 
several factors [32] that may modulate the transcription of perox-
isome proliferator-activated receptor-gamma (PPARγ) and the 
mitogen-activated protein kinase (MAPK) cascade involved in 
adipocyte differentiation, proliferation, adipogenesis, and lipid 
metabolism [33,34]. T also promotes visceral adipose tissue (VAT) 
distribution and chronic low-grade inflammation (Fig. 1).

The androgen DHT may not inhibit the proliferation of 
preadipocytes in vitro [35]; however, in general, androgens sup-
press adipocyte differentiation into mature adipocytes by epige-
netic control through decreased PPARγ transcription [36]. Thus, 
T and DHT inhibit preadipocyte differentiation and late-stage 
adipocyte maturation in both subcutaneous adipose tissue (SAT) 
and VAT compartments [37]. By contrast, DHEA has a more com-
plex role [37]. It does not affect subcutaneous preadipocyte dif-
ferentiation; instead, DHEA decreases adipogenesis in omental 
preadipocytes [37, 38]. In addition to modulating adipocyte pro-
liferation and differentiation, T at higher levels promotes ad-
ipocyte hypertrophy [39] and overproduction of adipokines [40] 
through AR stimulation [30]. Furthermore, T enhances the infil-
tration of macrophages of dipocytes and promotes expansion 
and lipid accumulation in VAT [41]. The distribution and capac-
ity of androgen receptors on adipocytes vary by region, with a 
higher binding capacity observed in VAT. As regards lipid me-
tabolism, T is a potent regulator of lipolysis and its action var-
ies across species [42]. T modulates adipogenesis and lipolysis. 
Androgens may increase abdominal lipolysis without altering 
lipolysis in the gluteal-femoral compartment, by decreasing li-
pid uptake and synthesis [43, 44]. T diminishes lipolysis in SAT 
by decreasing expression of β2-adrenergic receptors and 
hormone-sensitive lipase (HSL), while cyclic adenosine 
monophosphate stimulates adenylate cyclase activities [35]. 
At high levels, T diminishes lipolysis in VAT of nonhuman 
primates [45] and stimulates lipogenesis in women with or 
without PCOS [2, 46]. Nevertheless, even in nonobese PCOS, 
T increases the ability of catecholamines to activate hy-
drolysis of triglycerides into free fatty acids (FFAs) [47]. 
This primary lipolytic defect in PCOS is an exception.
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Adipocyte size in PCOS

The size of adipocytes is closely associated with their func-
tion; hypertrophic adipocytes are dysfunctional [48]. In hyperan-
drogenic obese women with PCOS, adipocytes are even larger 
than those taken from obese controls [39], and they produce many 
adipocytokines [49]. In nonobese hyperandrogenic women with 
PCOS, adipocytes may also be enlarged and dysfunctional [50]. 
The hypertrophy of adipocytes in PCOS may be due to imbal-
anced abilities of adipocyte storage or adipocyte lipolytic ac-
tivities [51]. Adipocyte size is related to insulin growth factor-1, 
phosphoinositide 3-kinase, and protein kinase B gene expres-
sion [52]. Of note, these genes combine external signals such as 
insulin and T [52, 53].

In PCOS, hyperandrogenism has an essential role in the de-
velopment of adipocyte hypertrophy in SAT and fat expansion 
[40, 51, 54]. In obesity, adipocytes are hypertrophic, possessing a 
propensity to pro-inflammatory gene expression. They are also 
dysregulated in their expression of cytokines and are character-
ized by an increased proportion of macrophage invasion [10,55]. 
Hypertrophic adiposity driven by T is highly correlated with 
insulin resistance [39,50]. Hypertrophic adipocytes produce and 
secrete various paracrine growth factors that stimulate increases 
in the number and size of preadipocytes [56]. In general, because 
of the higher production of adipocytokines and cytokines, hy-
pertrophic adipocytes are associated with abnormal lipid metab-
olism, metabolic syndrome, type 2 diabetes mellitus (T2DM), 
non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, 
and CVD [39,57]. In summary, hypertrophic adipocytes are associ-
ated with PCOS and various comorbid conditions [25, 50, 51].

Adipose tissue distribution in PCOS

In normally-cycling women, various genetic, ethnic, social, 
and hormone factors influence body adipose tissue distribution. 
Typically, women with a higher percentage of body fat tend to 
show distribution of adipose tissue in the hips and thighs [58]. In 
abnormal conditions such as obesity and PCOS, the capacity of 
subcutaneous adipose tissue to safely store fat is exceeded, and 
excess fat is deposited in abnormal locations such as the retro-
peritoneum, omentum, liver, and muscle [48, 59]. Also, impaired 
adipocyte proliferation or differentiation capacity leads to the 
redistribution of fat tissue from subcutaneous areas to visceral 
depots [51]. In this manner, androgens may drive adipose tissue 
mass in a depot-specific way through site-specific modulation 
of preadipocyte proliferation and differentiation or by lipid syn-
thesis (lipogenesis) or lipolysis in mature adipocytes [60].

In women with PCOS, hyperandrogenism modifies body fat 
distribution, causing adipocytes to accumulate in the abdomi-
nal wall, and to surround or infiltrate intra-abdominal organs 
[46, 61]. Androgens are associated with increased fat mass and 
an increased amount of fat localized on the trunk [62, 63]. Thus, 
women with PCOS have more central obesity than weight- and 
body mass index-matched controls [64]. Total intra-abdominal 
fat appears to be increased even in normal-weight PCOS [65, 

66]. Additionally, even when not increased, the abdominal fat of 
normal-weight women with PCOS is comprised of a more sig-
nificant proportion of small dysfunctional adipocytes (hyperpla-
sia), compared with what is found in controls [8]. In overweight/
obese women with PCOS, visceral adipocytes are enlarged 
(hypertrophic), expanded, and dysfunctional [39, 50, 67], and they 

Figure 1 Proposed mechanism of excess androgen receptor activation in various system in hyperandrogenic woman. 

T = testosteron; AR = androgen receptor; POMC = proopiomelanocortin
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positively correlate with T, free testosterone, and A4 levels [8]. 
Conversely, some studies did not show more significant viscer-
al fat accumulation in either obese or nonobese PCOS [68, 69]; 
nevertheless, there is a global excess of fat mass in PCOS [68, 70]. 
Despite persistent debate regarding the presence of increased 
visceral fat in women with PCOS, these women have decreased 
gluteal-femoral gynaecoid adiposity.

Subcutaneous adipose tissue in PCOS
Adipocytes from various regions produce different signaling 
molecules that influence insulin secretion and glucose and li-
pid metabolism in muscle and liver [71]. In vitro, T reduces ear-
ly-stage adipocyte differentiation, limiting adipocyte number 
and fat storage in abdominal subcutaneous adipose tissue of 
lean women with PCOS [72]. When pronounced, abdominal sub-
cutaneous adipose tissue is associated with hyperandrogenemia 
and a higher risk of comorbidities [73-75]. In PCOS, subcutaneous 
adipocytes may also be enlarged or hyperplasic with limited ca-
pacity to store fat, thus favoring increased release of FFAs with 
uptake in lean non-PCOS cells and omentum. This lipotoxicity 
explains insulin resistance in lean, non-PCOS individuals [66, 76]. 
Furthermore, SAT increased conversion of the weak androgen 
(A4) into the potent androgen (T), and enhanced local adipo-
genesis within adipocytes predisposes to fatty acid overspill into 
the systemic circulation in non-PCOS and normal-weight PCOS 
[77]. Abnormal subcutaneous adipocytes (hyperplasic or hyper-
trophic) decrease insulin-mediated glucose utilization, reduce 
glucose transporter type 4 expression (GLUT-4), and stimulate 
lipolysis through β2-adrenergic receptors, decreasing the HSL 
and protein kinase A (PKA) regulatory components [50].

In obese or nonobese PCOS, adipocytes of SAT are equally 
insulin-resistant in regard to glucose metabolism and antilipo-
lytic activity [78]. In preadipocytes of SAT of nonobese PCOS, T 
decreases the number of β-adrenergic receptors and diminishes 
HSL activity with a lower catecholamine lipolytic effect [47, 50]. 
The reduced lipolysis in SAT may explain adipocyte hypertro-
phy and dysfunction in this depot. Of note, even in normal con-
centrations, T amplifies the ability of catecholamines to activate 
hydroxylation of triglycerides in FFAs and glycerol [30].

Visceral adipose tissue in PCOS
Among the relevant comorbidities of women with PCOS, about 
70% are overweight or obese [78]. Androgen binding capacity 
is more significant in VAT [30]. Hyperandrogenemic states such 
as obese PCOS may favor visceral deposition even when com-
pared with obese non-PCOS [65, 79, 80]. Despite previous reports of 
women with PCOS having global adiposity rather than visceral 
adiposity, most studies showed that adipose tissue has a pref-
erentially visceral distribution in this syndrome [81]. The pref-
erential VAT distribution in nonobese PCOS is accompanied 
by an increased number of small subcutaneous adipocytes [8]. 
The increased visceral adiposity in nonobese and obese PCOS 
is associated with metabolic dysfunctions such as dyslipidem-
ia, abnormal carbohydrate metabolism, insulin resistance, ar-
terial hypertension, low-grade chronic inflammation, and a 
pro-thrombotic state, resulting in a higher risk of T2DM and 
CVD [18, 51, 82-84]. Of note, preferential central obesity distribution 
in women with PCOS was not found  [85].

VAT releases more FFAs than SAT [86], suggesting that there 
are regional variations in adipocyte lipolysis. Thus, VAT has 
higher catecholamine-stimulated lipolysis, lower lipoprotein 
lipase activity, and lower glucose uptake than SAT [71, 87]. Be-
cause VAT is linked to the liver via the portal vein, alterations 
in visceral adipocytes directly affect liver function. VAT lipoly-
sis is enhanced in PCOS, while the lipolysis in abdominal SAT 
is diminished by T in this syndrome [47, 51]. The increased rate 
of VAT lipolysis in PCOS, even in nonobese women, is due to 
β2-adrenoceptor catecholamine-induced adipocyte lipolysis 
mediated by a unique stoichiometric change in the properties 
of the PKA-HSL enzyme complex [47]. Additionally, in in vitro 
studies, T was shown to be a positive contributory factor to cat-
echolamine lipolytic capacity. In summary, human and animal 
data strongly suggest unique upregulation in visceral fat cells 
due to selective increases in the function of the PKA-HSL com-
plex [88]. The altered lipolysis in both SAT and VAT in women 
with PCOS has an important pathophysiological role.

Hyperandrogenism, obesity, and insulin 
resistance in PCOS

In women with PCOS, an increase in luteinizing hormone 
pulsatility is associated with a decrease in follicle-stimulating 
hormone levels, and this combined effect on ovarian theca and 
granulosa cells results in increased production and release of T 
and A4. Higher testosterone levels directly stimulate the secre-
tion of insulin by pancreatic β-cells [89-93] (Fig. 2). Additionally, 
higher circulating insulin levels amplify the effects of luteiniz-
ing hormone (LH) on theca cells and on T production, which is 
increased by LH. Furthermore, the increase in T promotes not 
only pancreatic β-cell dysfunction, but also the expression and 
accumulation of adipose tissue in the omentum and intra-ab-
dominal organs [94].

Androgens and adipocytes interplay in PCOS

Figure 2 The role of androgen modulation of pancreatic B-cell function 
and insulin secretion.
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As previously stated, in visceral adiposity, adipocytes are 
enlarged, and insulin resistance and increased lipolysis occur 
[95]. More significant release of FFAs in the portal vein affects 
liver function [47, 50]. Although hypertrophic adipocytes are mark-
ers of metabolic derangements, dysregulated metabolism in 
PCOS can be related to either larger or numerous small adipo-
cytes of abdominal subcutaneous adipose tissue [66]. In clinical 
studies, androgens strongly correlated with markers of central 
adiposity [7, 18, 96].

Androgens can induce insulin resistance by directly affect-
ing skeletal muscle and adipocytes through increased adipocy-
tokine secretion and increased visceral adiposity in experimental 
studies [97-99]. Even normal-weight women with PCOS exhibit-
ed increased fasting insulin levels and greater pancreatic β-cell 
response than body mass index-matched controls [8]. Of note, 
visceral fat deposition is primarily driven by insulin resistance, 
and VAT distribution exacerbates insulin resistance. This bidi-
rectional vicious cycle is present in PCOS [79]. The hypertrophic 
insulin-resistant adipocyte appears to be a consequence of di-
minished insulin-dependent autophosphorylation [100], reduced 
IRS-2 tyrosine phosphorylation, or reduced GLUT-4 within the 
adipocyte [101, 102]. In summary, higher androgen levels can impair 
the insulin effect directly or through various changes in different 
tissues [103]. To overcome peripheral insulin resistance, more in-
sulin is produced by β-cells, resulting in hyperinsulinemia. This 
hyperinsulinemia, acting on theca cells, increases testosterone 
synthesis. Furthermore, chronic androgen excess predisposes to 
T2DM secondary to pancreatic β-cell failure [93, 104, 105].

Conclusions

There is a close interrelationship between androgens and ad-
ipocytes in women with PCOS. Adipocytes produce potent 
androgens, and androgens modulate adipocyte proliferation, 
hypertrophy, macrophage invasion, and overproduction of var-
ious adipocytokines that stimulate steroidogenic cell secretion. 
There is a role for hyperandrogenism in adipose tissue distri-
bution, favoring subcutaneous abdominal wall and visceral 
adiposity instead of fat distribution to the hips and thighs. In 
nonobese women with PCOS, adipocytes can be hyperplastic, 
enlarged, and dysfunctional in subcutaneous adipose tissue, and 
this finding may explain the insulin resistance and abnormal li-
pid metabolism with lipid toxicity in this group. The intra-ab-
dominal deposition also appears to be increased in lean PCOS.

Overweight/obese women with PCOS have a global excess 
fat mass. When pronounced, abnormal subcutaneous adipose 
tissue is also associated with hyperandrogenism and a high-
er risk of comorbidities. However, in obese PCOS, obesity is 
preferentially centralized, even when compared with body mass 
index-matched controls. In PCOS with obesity, the hypertroph-
ic adipocytes are also associated with dyslipidemia, abnormal 
carbohydrate metabolism, insulin resistance, type 2 diabetes 
mellitus, low-grade chronic inflammation, the pro-thrombotic 
state, and cardiovascular disease. Taken together, these findings 
reinforce the notion that lowering fat mass is an essential thera-
peutic measure in the management of women with PCOS, par-
ticularly when overweight or obese.
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