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Introduction

In all eukaryote cells, mitochondria are the organelles provid-
ing most of the energy used by these cells and are therefore 
also called the “powerhouse of the cells”. In terms of evolu-
tionary biology, these organelles originate either from endo-
symbiotically living aerobic bacteria or from incorporated 
factual anaerobic bacteria in archaea [1]. Structurally, mito-
chondria have two membranes, an outer membrane and an 
inner membrane forming so-called cristae which are highly 
compartmentalized sections (Figure 1). Between these two 
membranes is the intermembrane space. The space enclosed 
by the inner membrane is called matrix. Human sperm con-
tain about 50 to 75 mitochondria helically arranged around the 
axoneme in their midpiece in about 12 to 13 gyres and 2 mito-
chondria per gyre [2,3]. In contrast, mature human oocytes con-
tain about 100,000 spherical mitochondria with only a small 
number of cristae [4].

    In the cytoplasm of cells, glycolysis is an anaerobic pro-
cess taking place converting glucose into pyruvate and pro-
ducing four molecules of adenosine triphosphate (ATP). In 

the presence of oxygen, the α-keto acid pyruvate is trans-
ported by pyruvate carriers into the mitochondrial matrix and 
then converted by pyruvate dehydrogenase into acetyl-CoA 
which enters the Krebs cycle for oxidative phosphorylation 
(OXPHOS) [6]. Acetyl-CoA is also formed via β-oxidation 
from fatty acids which are transported through the inner 
mitochondrial membrane by carnitine/acylcarnitine [7]. The 
multi-enzyme complexes I-IV (complex I: NADH dehydro-
genase; complex II: succinate dehydrogenase; complex III: 
cytochrome 3 reductase; complex IV: cytochrome 3 oxidase) 
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located in the inner mitochondrial membrane are forming the 
mitochondrial electron transport chain (ETC), while complex 
V (ATP synthase) produces the ATP that is necessary for cel-
lular energy needs [8].
    As a result of this oxidative phosphorylation, not only ATP 
is produced but up to 5% of the consumed oxygen is leaving 
the system as superoxide (•O2

-), hydrogen peroxide (H2O2) or 
other reactive oxygen species (ROS) compounds [9-11], which 
have half-life times in the milli-second (10-3 s) to nano-sec-
ond (10-9 s) range [12]. These cytotoxic products accelerate cell 
aging and can cause numerous disorders and cell death via 
cell cycle dysregulation and apoptosis [13]. Therefore, with the 
significant increase in the atmospheric oxygen concentration 
about 2.3 billion years ago [14], protective mechanisms pre-
venting extremely sensitive biomolecules developed including 
enzymatic and non-enzymatic antioxidant systems. Life also 
adapted to these higher oxygen levels by using it to produce 
energy in the mitochondria [15] as well as for cellular redox 
regulation, signaling [16] and triggering essential physiological 
functions such as gene regulation, cellular activities or synap-
tic plasticity [17-20]. Hence, H2O2 and •O2

- are not only harmful, 
but fulfill essential physiological and cellular functions regu-
lating functions such as immunity, proliferation, development, 
or steroidogenesis [21]; all depending on the concentration.
    Since mitochondria developed from endosymbiotic bacteria, 
mitochondria have their own DNA (mtDNA) which encodes for 
approximately 13 protein subunits of the mitochondrial electron 
transfer chain, and ribosomal RNA (rRNA) and transfer RNA 
(tRNA) components of the mitochondrial translation system 
[22]. However, contrary to nuclear DNA (nDNA), mtDNA has 
3 to 7 circular, much shorter, double-stranded DNA strands 
which are and not protected by histones and protamines like 
the nDNA. Furthermore, since mtDNA replicates much faster 
than nDNA, it does not have proofreading mechanisms and 
only very basic repair mechanisms, the mitochondrial genome 
is about 100-times more prone to mutations and mitochon-
drial diseases than nDNA [23,24]. In addition, since the mtDNA 

genome sites responsible for ROS-generation overlap with their 
positions are mainly attached to the mitochondrial membrane 
facing the matrix [25], crosslinks between mtDNA proteins can 
be formed increasing mitochondrial fission and mtDNA dam-
age [26,27] eventually leading to a vicious cycle of ROS pro-
duction due to damage to the ETC. In meta-phase II mouse 
oocytes, Lord and co-workers showed that following ovulation, 
increased production of ROS leads to lipid peroxidation with 
the formation of 4-hydroxynonenal (4HNE), malondialdehyde 
and acrolein [28]. In turn, these aldehydes chemically modify 
oocyte proteins including mitochondrial succinate dehydro-
genase as primary target with subsequent loss of mitochon-
drial membrane potentially leading to apoptosis. In oocytes, 
this postovulatory aging process appears to be similar to that 
observed in sperm exposed to oxidative stress [29].

Redox homeostasis
Considering the negative and positive physiological effects 
of ROS, one needs to understand redox biology. Initially, the 
concept of “oxidative stress”, i.e. the negative effects of ROS, 
was introduced into biomedicine by Helmut Sies and was orig-
inally defined as “disturbance in the pro-oxidant-antioxidant 
balance in favour of the former, leading to potential damage” 
[30]. Later, it was redefined as “an imbalance between oxidants 
and antioxidants in favour of the oxidants, potentially leading 
to damage” [31]. On the other hand, it has been shown that an 
excessive concentration of antioxidants is also causing phys-
iological damage [32-36]. This condition is called “reductive 
stress” and is as harmful as “oxidative stress” [37]. Taking both 
sides of the same coin, the negative and the positive effects of 
ROS, into account, Lushchak and Storey suggest that “oxida-
tive stress is a transient or long-term increase of steady-state 
ROS levels, disturbing cellular metabolic and signaling path-
ways, particularly ROS-based ones, and leading to oxidative 
modifications of an organism’s macromolecules that, if not 
counterbalanced, may culminate in cell death via necrosis or 
apoptosis” [38]. This definition recognizes that a fine balance 
between oxidative stress and reductive stress has to be main-
tained. Sies defined the physiological range of ROS necessary 
for normal cellular and bodily functions as “oxidative eustress” 
[31]. Excessive amounts of antioxidants can trigger numerous 
diseases including cardiomyopathy, Alzheimer’s disease, dys-
functions of the blood-brain barrier, or infertility [33,35,39-42]. 
     In sperm, oxidative stress is not only causing DNA frag-
mentation and mitochondrial dysfunction but is also nega-
tively affecting gene expression and sperm-oocyte fusion [43-

47]. Furthermore, oxidative stress can affect the genome and 
epigenome integrity [48,49]. In oocytes, the cytoskeleton, oocyte 
maturation and fertilization are negatively affected [50,51]. On 
the other hand, an excessive intake of antioxidants causes an 
opening of the disulfide bonds of protamines in the sperm head 
[52,53] and inhibit sperm capacitation [54]. Therefore, for nor-
mal reproductive functions of sperm and oocytes, the state of 
“oxidative eustress” with an approximate cellular H2O2 con-
centration between 1 nM and 10 nM H2O2 needs to be main-
tained [55], i.e. the maintenance of the cellular redox homeo-
stasis (Figure 2).

Figure 1 Schematic diagram of a mitochondrion at light-microscopical 
(left) and transmission electron microscopical (TEM; right) level. Out 
and inner membrane, cristae and matrix are indicated. In addition, 
arrows point to ribosomes. Taken from Fisher et al. [5].
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Impact of redox stress on male and  
female fertility:
Male and female fertility can be compromised by numerous repro-
ductive dysregulations, adverse lifestyle, aging, environmental 
pollutants or radio- and chemotherapy. In most of these condi-
tions, oxidative stress is significantly involved as a major cause 
or contributor to the infertility. In men, a major cause of infertility 
is varicocele. While in the general population, this condition is 
found in 15% of the adult men, the prevalence is 35% and up to 
80% in men with primary and secondary infertility, respectively, 
much higher [56-59]. Although all of these conditions have differ-
ent aetiologies, oxidative stress has been implicated as a major 
mediator for reproductive dysfunctions, thus  infertility [60-68].
    In sperm, oxidative stress specifically leads to nuclear and 
mitochondrial DNA decays, including DNA fragmentation [69,70], 
DNA methylation [71], and telomere changes and attrition [72,73], as 
well as and mitochondrial DNA damage resulting in mitochon-
drial dysfunction [74,75]. On the other hand, due to the extraordi-
nary high susceptibility of sperm plasma membranes to oxida-
tive assaults, this leads to lipid peroxidation of membrane lipids, 
resulting in poor motility, compromised acrosome reaction and 
the inability of sperm to fuse with the oolemma [76,77], thus poor 
fertilization ability. Similarly, on the female side, the oocytes, 
if exposed to excessive oxidative stress, sustain DNA damage 
including mtDNA damage, altered gene expression, mitochon-
drial dysfunction, impaired oocyte maturation and luteolysis [78-81]. 

Sperm health
Focusing on sperm health, functions and criteria, numerous stud-
ies have shown the detrimental effects of oxidative stress on all 
sperm functions [82-84], therefore drastically impairing male fertil-
ity (Figure 3). On the other hand, one must always consider that 

normal physiological functions require a small amount of ROS. 
Panner Selvam et al. [36], by determining the oxidation-reduction 
potential (ORP) using the MiOXSYS system, showed that good 
sperm motility, vitality, and normal mitochondrial membrane 
potential (MMP) depend on a physiological level of ROS [36]. If 
the redox potential is too high under oxidative stress conditions or 
too low under reductive stress conditions, sperm will not function 
properly anymore as indicated by decreased motility, vitality and 
MMP. The authors also showed that under oxidative and reductive 
stress conditions, the expression of 3 proteins of the mitochondrial 
OXPHOS complex, CV-ATPA, CIII-UQCRC2 and CIV-MTCO1 
significantly decreased after exposure of sperm to oxidative and 
reductive stress conditions with CV-ATPA and CIII-UQCRC2 
almost disappearing. Essentially, ROS produced in mitochon-
dria of non-capacitating sperm may influence the development 
of the early embryo by inducing  sperm DNA fragmentation [85]. 

Oocyte and ovarian health
Redox homeostasis is also required for female fertility. Here, 
ROS are essential for the regulation of the ovarian cycle and 
ovarian steroidogenesis [87], including oocyte maturation [88], 
ovulation [89], follicle development, atresia and luteolysis [90,91]. It 
has also been shown that oxidative stress is intimately involved 
in ovarian aging, mitochondrial dysfunction, spindle abnormal-
ities, telomere shortening and inflammatory processes such as 
PCOS or endometriosis [92-95]. In these syndromes, oxidative 
stress with subsequent mitochondrial dysfunction can affect 
folliculogenesis, the dialogue between oocyte and cumulus 
cells, maturation of the ooplasm, chromosome segregation by 
increasing aneuploidy risks, and cause atresia of granulosa and 
theca cells. In order to support healthy oocyte development 
and quality, follicular fluid contains high amounts of various 

Figure 2 Implications of redox extremes. Under oxidative and reductive stress conditions, pathological damages are done to oocytes, sperm and 
the organism as a whole. These conditions can be caused by numerous risk factors.
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antioxidants [96,97]. Among the antioxidant enzymes, superoxide 
dismutase [98], catalase [99] and glutathione [100,101] are critical for 
the maintenance of redox homeostasis for ovulation, the luteal 
phase, for the protection of genomic integrity, or the develop-
ment and protection of oocytes.
    In follicular fluid of older women, Carbone and co-workers 
found lower activities of glutathione and catalase together with 
a lower ratios of catalase/superoxide dismutase and glutathi-
one peroxidase/superoxide dismutase [96]. Age-related oxidative 
damage as observed as lipid peroxidation, damage to proteins 
and DNA has also been reported in follicles and ovarian tis-
sue of older women [102,103], thus causing cellular dysfunction, 
affecting follicle development and consequently oocyte quality 
[104,105]. This increase in oxidative stress is not only seen in aging 
women, but also in infertile ones. Zaha et al. [106] reported signifi-
cantly higher levels of free glutathione in follicular fluid of infer-
tile women as compared to a fertile control group while other 
oxidative stress markers such as malondialdehyde or superox-
ide dismutase showed no difference [106]. Also, none of the oxi-
dative stress markers investigated was affected in serum. The 
higher glutathione levels in follicular fluid of infertile women 
could possibly be explained as a counter-regulation mechanism 
against oxidative stress. Furthermore, since oxidative stress is 
resulting in mitochondrial dysfunction with altered mitochon-
drial membrane potential, this leads to a release of cytochrome 
c triggering apoptosis [107]. Since telomeres are very prone to 
oxidation and due to heterochromatin state of telomeres, these 
damages are less efficiently repaired [108,109]. A study by Yamada-
Fukunaga et al. [110] showed that telomeres in oocytes from older 
females are significantly shorter.

Effect of carnitines
Aside from eliminating the root cause of oxidative stress, treating 
it with antioxidants is one of the options. Among the different 
antioxidants that can neutralize high ROS levels causing oxida-
tive stress is L-carnitine (β-hydroxy-γ-trimethylaminobutyrate), 
a natural antioxidant that is produced in living organisms from 
the amino acids lysine and methionine in the liver and kidney. 
While about 25% of the L-carnitine is synthesized endogenously, 
the remaining 75% have to be provided by food [7]. L-Carnitine 
is found in large quantities in red meat, especially mutton and 
lamb whereas poultry has less L-carnitine and vegetarian foods 
very little or no L-carnitine.
    In human cells, L-carnitine has vital roles in alleviating cel-
lular damage by transferring long-chain fatty acids to the inter-
nal mitochondrial membrane for β-oxidation, modulating acyl-
Co-A/CoA, reducing the acyl group toxicity by excreting car-
nitine esters, and having antioxidant and antiradical properties 
[7,111,112]. L-carnitine improves mitochondrial functions by shut-
tling fatty acids into β-oxidation, thereby preventing accumula-
tion of damaged lipids [113,114], hence preventing lipid peroxida-
tion of the sensitive sperm membranes. With regard to sperm, 
oocytes and embryo development, L-carnitine has been shown 
to improve sperm count, motility, morphology and DNA frag-
mentation, and regulate oocyte and embryo energetics [115-118] 
and can therefore improve fertility rates. Treatment of infertile 
women with L-carnitine resulted in significantly higher trans-
ferable embryo rates as well as better quality of embryos [119]. In 
a systematic review and meta-analysis of 69 studies, Zafar and 
co-workers reported significantly higher pregnancy rates where 
men were supplemented with L-carnitine and micronutrients [120].  

Figure 3 All sperm functions are significantly negatively affected by seminal oxidative stress. (Figure modified according to Henkel et al. [86].
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Similarly, in a randomized, double-blind, placebo-controlled trial 
including 263 patients, Lahimer et al. [121] found that supplementa-
tion of infertile men with L-carnitine and micronutrients signifi-
cantly improved clinical pregnancy and live birth rates.

Conclusion

In conclusion, mitochondria are the site in eukaryotes where 
the required energy as well as ROS are produced and are cru-
cial for sperm and oocyte development and function. Although 
small amounts of ROS are necessary to trigger essential cellu-
lar functions, excessive amounts of ROS that are not counter-
acted by a sufficient amount of antioxidants cause diseases and 
negatively affect sperm and oocyte functions, hence fertiliza-
tion and embryo development. Therefore, maintaining redox 
homeostasis is essential for normal reproductive functions in 
men and women. In case of oxidative stress due to a number 
of diseases and health and lifestyle conditions, supplementa-
tion with antioxidants can improve the situation. Among these, 
L-carnitine has shown to be of particular importance as this 
quaternary amine has not only direct antioxidant properties but 
is also intimately involved in shuttling long-chain fatty acids 
into the mitochondrial β-oxidation for energy production as 
well as the detoxification of damaging lipids.
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